Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs

Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Suying Liu, Feng Liu
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:35d4e113c42c4a068e6a75e2741df6b2
record_format dspace
spelling oai:doaj.org-article:35d4e113c42c4a068e6a75e2741df6b22021-11-25T18:16:49ZSobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs10.3390/math92228832227-7390https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b22021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2883https://doaj.org/toc/2227-7390Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint Sobolev spaces and Hajłasz–Sobolev spaces on <i>G</i>.Suying LiuFeng LiuMDPI AGarticleinfinite connected graphmultilinear fractional maximal operatorendpoint Sobolev regularityHajłasz–Sobolev spaceMathematicsQA1-939ENMathematics, Vol 9, Iss 2883, p 2883 (2021)
institution DOAJ
collection DOAJ
language EN
topic infinite connected graph
multilinear fractional maximal operator
endpoint Sobolev regularity
Hajłasz–Sobolev space
Mathematics
QA1-939
spellingShingle infinite connected graph
multilinear fractional maximal operator
endpoint Sobolev regularity
Hajłasz–Sobolev space
Mathematics
QA1-939
Suying Liu
Feng Liu
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
description Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint Sobolev spaces and Hajłasz–Sobolev spaces on <i>G</i>.
format article
author Suying Liu
Feng Liu
author_facet Suying Liu
Feng Liu
author_sort Suying Liu
title Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
title_short Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
title_full Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
title_fullStr Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
title_full_unstemmed Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
title_sort sobolev regularity of multilinear fractional maximal operators on infinite connected graphs
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2
work_keys_str_mv AT suyingliu sobolevregularityofmultilinearfractionalmaximaloperatorsoninfiniteconnectedgraphs
AT fengliu sobolevregularityofmultilinearfractionalmaximaloperatorsoninfiniteconnectedgraphs
_version_ 1718411372830654464