Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:35d4e113c42c4a068e6a75e2741df6b2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:35d4e113c42c4a068e6a75e2741df6b22021-11-25T18:16:49ZSobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs10.3390/math92228832227-7390https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b22021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2883https://doaj.org/toc/2227-7390Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint Sobolev spaces and Hajłasz–Sobolev spaces on <i>G</i>.Suying LiuFeng LiuMDPI AGarticleinfinite connected graphmultilinear fractional maximal operatorendpoint Sobolev regularityHajłasz–Sobolev spaceMathematicsQA1-939ENMathematics, Vol 9, Iss 2883, p 2883 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
infinite connected graph multilinear fractional maximal operator endpoint Sobolev regularity Hajłasz–Sobolev space Mathematics QA1-939 |
spellingShingle |
infinite connected graph multilinear fractional maximal operator endpoint Sobolev regularity Hajłasz–Sobolev space Mathematics QA1-939 Suying Liu Feng Liu Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
description |
Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint Sobolev spaces and Hajłasz–Sobolev spaces on <i>G</i>. |
format |
article |
author |
Suying Liu Feng Liu |
author_facet |
Suying Liu Feng Liu |
author_sort |
Suying Liu |
title |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
title_short |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
title_full |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
title_fullStr |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
title_full_unstemmed |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
title_sort |
sobolev regularity of multilinear fractional maximal operators on infinite connected graphs |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2 |
work_keys_str_mv |
AT suyingliu sobolevregularityofmultilinearfractionalmaximaloperatorsoninfiniteconnectedgraphs AT fengliu sobolevregularityofmultilinearfractionalmaximaloperatorsoninfiniteconnectedgraphs |
_version_ |
1718411372830654464 |