Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | article |
| Language: | EN |
| Published: |
MDPI AG
2021
|
| Subjects: | |
| Online Access: | https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| id |
oai:doaj.org-article:35d4e113c42c4a068e6a75e2741df6b2 |
|---|---|
| record_format |
dspace |
| spelling |
oai:doaj.org-article:35d4e113c42c4a068e6a75e2741df6b22021-11-25T18:16:49ZSobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs10.3390/math92228832227-7390https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b22021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2883https://doaj.org/toc/2227-7390Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint Sobolev spaces and Hajłasz–Sobolev spaces on <i>G</i>.Suying LiuFeng LiuMDPI AGarticleinfinite connected graphmultilinear fractional maximal operatorendpoint Sobolev regularityHajłasz–Sobolev spaceMathematicsQA1-939ENMathematics, Vol 9, Iss 2883, p 2883 (2021) |
| institution |
DOAJ |
| collection |
DOAJ |
| language |
EN |
| topic |
infinite connected graph multilinear fractional maximal operator endpoint Sobolev regularity Hajłasz–Sobolev space Mathematics QA1-939 |
| spellingShingle |
infinite connected graph multilinear fractional maximal operator endpoint Sobolev regularity Hajłasz–Sobolev space Mathematics QA1-939 Suying Liu Feng Liu Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
| description |
Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint Sobolev spaces and Hajłasz–Sobolev spaces on <i>G</i>. |
| format |
article |
| author |
Suying Liu Feng Liu |
| author_facet |
Suying Liu Feng Liu |
| author_sort |
Suying Liu |
| title |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
| title_short |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
| title_full |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
| title_fullStr |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
| title_full_unstemmed |
Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs |
| title_sort |
sobolev regularity of multilinear fractional maximal operators on infinite connected graphs |
| publisher |
MDPI AG |
| publishDate |
2021 |
| url |
https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2 |
| work_keys_str_mv |
AT suyingliu sobolevregularityofmultilinearfractionalmaximaloperatorsoninfiniteconnectedgraphs AT fengliu sobolevregularityofmultilinearfractionalmaximaloperatorsoninfiniteconnectedgraphs |
| _version_ |
1718411372830654464 |