Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint...
Guardado en:
Autores principales: | Suying Liu, Feng Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Orlicz-Sobolev inequalities and the Dirichlet problem for infinitely degenerate elliptic operators
por: Usman Hafeez, et al.
Publicado: (2021) -
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
por: Ziwei Li, et al.
Publicado: (2021) -
Sobolev regularity solutions for a class of singular quasilinear ODEs
por: Zhao Xiaofeng, et al.
Publicado: (2021) -
Some estimates for the commutators of multilinear maximal function on Morrey-type space
por: Yu Xiao, et al.
Publicado: (2021) -
Nonlinear elliptic problems in weighted variable exponent Sobolev spaces by topological degree
por: Ait Hammou,Mustapha, et al.
Publicado: (2019)