Sobolev Regularity of Multilinear Fractional Maximal Operators on Infinite Connected Graphs
Let <i>G</i> be an infinite connected graph. We introduce two kinds of multilinear fractional maximal operators on <i>G</i>. By assuming that the graph <i>G</i> satisfies certain geometric conditions, we establish the bounds for the above operators on the endpoint...
Enregistré dans:
Auteurs principaux: | Suying Liu, Feng Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/35d4e113c42c4a068e6a75e2741df6b2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Orlicz-Sobolev inequalities and the Dirichlet problem for infinitely degenerate elliptic operators
par: Usman Hafeez, et autres
Publié: (2021) -
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
par: Ziwei Li, et autres
Publié: (2021) -
Sobolev regularity solutions for a class of singular quasilinear ODEs
par: Zhao Xiaofeng, et autres
Publié: (2021) -
Some estimates for the commutators of multilinear maximal function on Morrey-type space
par: Yu Xiao, et autres
Publié: (2021) -
Nonlinear elliptic problems in weighted variable exponent Sobolev spaces by topological degree
par: Ait Hammou,Mustapha, et autres
Publié: (2019)