Identification of significantly mutated subnetworks in the breast cancer genome
Abstract Recent studies showed that somatic cancer mutations target genes that are in specific signaling and cellular pathways. However, in each patient only a few of the pathway genes are mutated. Current approaches consider only existing pathways and ignore the topology of the pathways. For this r...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35eb7bde4a5b4476838f5f4ffa421d0f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:35eb7bde4a5b4476838f5f4ffa421d0f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:35eb7bde4a5b4476838f5f4ffa421d0f2021-12-02T14:01:32ZIdentification of significantly mutated subnetworks in the breast cancer genome10.1038/s41598-020-80204-52045-2322https://doaj.org/article/35eb7bde4a5b4476838f5f4ffa421d0f2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80204-5https://doaj.org/toc/2045-2322Abstract Recent studies showed that somatic cancer mutations target genes that are in specific signaling and cellular pathways. However, in each patient only a few of the pathway genes are mutated. Current approaches consider only existing pathways and ignore the topology of the pathways. For this reason, new efforts have been focused on identifying significantly mutated subnetworks and associating them with cancer characteristics. We applied two well-established network analysis approaches to identify significantly mutated subnetworks in the breast cancer genome. We took network topology into account for measuring the mutation similarity of a gene-pair to allow us to infer the significantly mutated subnetworks. Our goals are to evaluate whether the identified subnetworks can be used as biomarkers for predicting breast cancer patient survival and provide the potential mechanisms of the pathways enriched in the subnetworks, with the aim of improving breast cancer treatment. Using the copy number alteration (CNA) datasets from the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study, we identified a significantly mutated yet clinically and functionally relevant subnetwork using two graph-based clustering algorithms. The mutational pattern of the subnetwork is significantly associated with breast cancer survival. The genes in the subnetwork are significantly enriched in retinol metabolism KEGG pathway. Our results show that breast cancer treatment with retinoids may be a potential personalized therapy for breast cancer patients since the CNA patterns of the breast cancer patients can imply whether the retinoids pathway is altered. We also showed that applying multiple bioinformatics algorithms at the same time has the potential to identify new network-based biomarkers, which may be useful for stratifying cancer patients for choosing optimal treatments.Rasif AjwadMichael DomaratzkiQian LiuNikta FeiziPingzhao HuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Rasif Ajwad Michael Domaratzki Qian Liu Nikta Feizi Pingzhao Hu Identification of significantly mutated subnetworks in the breast cancer genome |
description |
Abstract Recent studies showed that somatic cancer mutations target genes that are in specific signaling and cellular pathways. However, in each patient only a few of the pathway genes are mutated. Current approaches consider only existing pathways and ignore the topology of the pathways. For this reason, new efforts have been focused on identifying significantly mutated subnetworks and associating them with cancer characteristics. We applied two well-established network analysis approaches to identify significantly mutated subnetworks in the breast cancer genome. We took network topology into account for measuring the mutation similarity of a gene-pair to allow us to infer the significantly mutated subnetworks. Our goals are to evaluate whether the identified subnetworks can be used as biomarkers for predicting breast cancer patient survival and provide the potential mechanisms of the pathways enriched in the subnetworks, with the aim of improving breast cancer treatment. Using the copy number alteration (CNA) datasets from the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study, we identified a significantly mutated yet clinically and functionally relevant subnetwork using two graph-based clustering algorithms. The mutational pattern of the subnetwork is significantly associated with breast cancer survival. The genes in the subnetwork are significantly enriched in retinol metabolism KEGG pathway. Our results show that breast cancer treatment with retinoids may be a potential personalized therapy for breast cancer patients since the CNA patterns of the breast cancer patients can imply whether the retinoids pathway is altered. We also showed that applying multiple bioinformatics algorithms at the same time has the potential to identify new network-based biomarkers, which may be useful for stratifying cancer patients for choosing optimal treatments. |
format |
article |
author |
Rasif Ajwad Michael Domaratzki Qian Liu Nikta Feizi Pingzhao Hu |
author_facet |
Rasif Ajwad Michael Domaratzki Qian Liu Nikta Feizi Pingzhao Hu |
author_sort |
Rasif Ajwad |
title |
Identification of significantly mutated subnetworks in the breast cancer genome |
title_short |
Identification of significantly mutated subnetworks in the breast cancer genome |
title_full |
Identification of significantly mutated subnetworks in the breast cancer genome |
title_fullStr |
Identification of significantly mutated subnetworks in the breast cancer genome |
title_full_unstemmed |
Identification of significantly mutated subnetworks in the breast cancer genome |
title_sort |
identification of significantly mutated subnetworks in the breast cancer genome |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/35eb7bde4a5b4476838f5f4ffa421d0f |
work_keys_str_mv |
AT rasifajwad identificationofsignificantlymutatedsubnetworksinthebreastcancergenome AT michaeldomaratzki identificationofsignificantlymutatedsubnetworksinthebreastcancergenome AT qianliu identificationofsignificantlymutatedsubnetworksinthebreastcancergenome AT niktafeizi identificationofsignificantlymutatedsubnetworksinthebreastcancergenome AT pingzhaohu identificationofsignificantlymutatedsubnetworksinthebreastcancergenome |
_version_ |
1718392132488658944 |