Automated Quantification of Brittle Stars in Seabed Imagery Using Computer Vision Techniques
Underwater video surveys play a significant role in marine benthic research. Usually, surveys are filmed in transects, which are stitched into 2D mosaic maps for further analysis. Due to the massive amount of video data and time-consuming analysis, the need for automatic image segmentation and quant...
Guardado en:
Autores principales: | Kazimieras Buškus, Evaldas Vaičiukynas, Antanas Verikas, Saulė Medelytė, Andrius Šiaulys, Aleksej Šaškov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35ef8684b6664060b4d7e550b3d47c8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Brittle stars from the Lower Cretaceous of Patagonia: first ophiuroid articulated remains for the Mesozoic of South America
por: Fernández,Diana E., et al.
Publicado: (2019) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Bo Zhong, et al.
Publicado: (2021) -
Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning
por: Giacomo Montereale Gavazzi, et al.
Publicado: (2021) -
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
An Approach to Semantically Segmenting Building Components and Outdoor Scenes Based on Multichannel Aerial Imagery Datasets
por: Yu Hou, et al.
Publicado: (2021)