Mixed-Fidelity Design Optimization of Hull Form Using CFD and Potential Flow Solvers
The present paper proposes a new mixed-fidelity method to optimize the shape of ships using genetic algorithms (GA) and potential flow codes to evaluate the hydrodynamics of variant hull forms, enhanced by a surrogate model based on an Artificial Neural Network (ANN) to account for viscous effects....
Guardado en:
Autores principales: | Gregory J. Grigoropoulos, Christos Bakirtzoglou, George Papadakis, Dimitrios Ntouras |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35f24b0a67fe4ea7ab000ea241ddc0f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Equipment Layout Optimization Based on Human Reliability Analysis of Cabin Environment
por: Xiangbin Meng, et al.
Publicado: (2021) -
A Swarm Intelligence Graph-Based Pathfinding Algorithm Based on Fuzzy Logic (SIGPAF): A Case Study on Unmanned Surface Vehicle Multi-Objective Path Planning
por: Charis Ntakolia, et al.
Publicado: (2021) -
Path Planning for Underwater Information Gathering Based on Genetic Algorithms and Data Stochastic Models
por: Matteo Bresciani, et al.
Publicado: (2021) -
An Improved Dueling Deep Double-Q Network Based on Prioritized Experience Replay for Path Planning of Unmanned Surface Vehicles
por: Zhengwei Zhu, et al.
Publicado: (2021) -
Sea Surface Temperature: From Observation to Applications
por: Francisco Pastor
Publicado: (2021)