GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
Abstract The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report tha...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35f4d047b40e4f74bc40708dc8bfcb3a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:35f4d047b40e4f74bc40708dc8bfcb3a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:35f4d047b40e4f74bc40708dc8bfcb3a2021-12-02T17:32:58ZGLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration10.1038/s41598-021-88159-x2045-2322https://doaj.org/article/35f4d047b40e4f74bc40708dc8bfcb3a2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88159-xhttps://doaj.org/toc/2045-2322Abstract The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart.Viviana M. FajardoIris FengBao Ying ChenCesar A. Perez-RamirezBaochen ShiPeter ClarkRong TianChing-Ling LienMatteo PellegriniHeather ChristofkHaruko NakanoAtsushi NakanoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Viviana M. Fajardo Iris Feng Bao Ying Chen Cesar A. Perez-Ramirez Baochen Shi Peter Clark Rong Tian Ching-Ling Lien Matteo Pellegrini Heather Christofk Haruko Nakano Atsushi Nakano GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
description |
Abstract The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart. |
format |
article |
author |
Viviana M. Fajardo Iris Feng Bao Ying Chen Cesar A. Perez-Ramirez Baochen Shi Peter Clark Rong Tian Ching-Ling Lien Matteo Pellegrini Heather Christofk Haruko Nakano Atsushi Nakano |
author_facet |
Viviana M. Fajardo Iris Feng Bao Ying Chen Cesar A. Perez-Ramirez Baochen Shi Peter Clark Rong Tian Ching-Ling Lien Matteo Pellegrini Heather Christofk Haruko Nakano Atsushi Nakano |
author_sort |
Viviana M. Fajardo |
title |
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
title_short |
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
title_full |
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
title_fullStr |
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
title_full_unstemmed |
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
title_sort |
glut1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/35f4d047b40e4f74bc40708dc8bfcb3a |
work_keys_str_mv |
AT vivianamfajardo glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT irisfeng glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT baoyingchen glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT cesaraperezramirez glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT baochenshi glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT peterclark glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT rongtian glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT chinglinglien glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT matteopellegrini glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT heatherchristofk glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT harukonakano glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration AT atsushinakano glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration |
_version_ |
1718380112370466816 |