GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration

Abstract The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Viviana M. Fajardo, Iris Feng, Bao Ying Chen, Cesar A. Perez-Ramirez, Baochen Shi, Peter Clark, Rong Tian, Ching-Ling Lien, Matteo Pellegrini, Heather Christofk, Haruko Nakano, Atsushi Nakano
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/35f4d047b40e4f74bc40708dc8bfcb3a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:35f4d047b40e4f74bc40708dc8bfcb3a
record_format dspace
spelling oai:doaj.org-article:35f4d047b40e4f74bc40708dc8bfcb3a2021-12-02T17:32:58ZGLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration10.1038/s41598-021-88159-x2045-2322https://doaj.org/article/35f4d047b40e4f74bc40708dc8bfcb3a2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88159-xhttps://doaj.org/toc/2045-2322Abstract The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart.Viviana M. FajardoIris FengBao Ying ChenCesar A. Perez-RamirezBaochen ShiPeter ClarkRong TianChing-Ling LienMatteo PellegriniHeather ChristofkHaruko NakanoAtsushi NakanoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Viviana M. Fajardo
Iris Feng
Bao Ying Chen
Cesar A. Perez-Ramirez
Baochen Shi
Peter Clark
Rong Tian
Ching-Ling Lien
Matteo Pellegrini
Heather Christofk
Haruko Nakano
Atsushi Nakano
GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
description Abstract The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart.
format article
author Viviana M. Fajardo
Iris Feng
Bao Ying Chen
Cesar A. Perez-Ramirez
Baochen Shi
Peter Clark
Rong Tian
Ching-Ling Lien
Matteo Pellegrini
Heather Christofk
Haruko Nakano
Atsushi Nakano
author_facet Viviana M. Fajardo
Iris Feng
Bao Ying Chen
Cesar A. Perez-Ramirez
Baochen Shi
Peter Clark
Rong Tian
Ching-Ling Lien
Matteo Pellegrini
Heather Christofk
Haruko Nakano
Atsushi Nakano
author_sort Viviana M. Fajardo
title GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
title_short GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
title_full GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
title_fullStr GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
title_full_unstemmed GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
title_sort glut1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/35f4d047b40e4f74bc40708dc8bfcb3a
work_keys_str_mv AT vivianamfajardo glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT irisfeng glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT baoyingchen glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT cesaraperezramirez glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT baochenshi glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT peterclark glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT rongtian glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT chinglinglien glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT matteopellegrini glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT heatherchristofk glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT harukonakano glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
AT atsushinakano glut1overexpressionenhancesglucosemetabolismandpromotesneonatalheartregeneration
_version_ 1718380112370466816