Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation

Predicting future values of a short time series remains a challenge. Here, the authors propose an auto-reservoir computing framework, which achieved accurate and robust multistep ahead prediction by transforming high-dimensional data into temporal dynamics.

Guardado en:
Detalles Bibliográficos
Autores principales: Pei Chen, Rui Liu, Kazuyuki Aihara, Luonan Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/35fa33ae9ab44fb5afcd45a755ee15e7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:35fa33ae9ab44fb5afcd45a755ee15e7
record_format dspace
spelling oai:doaj.org-article:35fa33ae9ab44fb5afcd45a755ee15e72021-12-02T14:55:15ZAutoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation10.1038/s41467-020-18381-02041-1723https://doaj.org/article/35fa33ae9ab44fb5afcd45a755ee15e72020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18381-0https://doaj.org/toc/2041-1723Predicting future values of a short time series remains a challenge. Here, the authors propose an auto-reservoir computing framework, which achieved accurate and robust multistep ahead prediction by transforming high-dimensional data into temporal dynamics.Pei ChenRui LiuKazuyuki AiharaLuonan ChenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-15 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Pei Chen
Rui Liu
Kazuyuki Aihara
Luonan Chen
Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
description Predicting future values of a short time series remains a challenge. Here, the authors propose an auto-reservoir computing framework, which achieved accurate and robust multistep ahead prediction by transforming high-dimensional data into temporal dynamics.
format article
author Pei Chen
Rui Liu
Kazuyuki Aihara
Luonan Chen
author_facet Pei Chen
Rui Liu
Kazuyuki Aihara
Luonan Chen
author_sort Pei Chen
title Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
title_short Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
title_full Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
title_fullStr Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
title_full_unstemmed Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
title_sort autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/35fa33ae9ab44fb5afcd45a755ee15e7
work_keys_str_mv AT peichen autoreservoircomputingformultistepaheadpredictionbasedonthespatiotemporalinformationtransformation
AT ruiliu autoreservoircomputingformultistepaheadpredictionbasedonthespatiotemporalinformationtransformation
AT kazuyukiaihara autoreservoircomputingformultistepaheadpredictionbasedonthespatiotemporalinformationtransformation
AT luonanchen autoreservoircomputingformultistepaheadpredictionbasedonthespatiotemporalinformationtransformation
_version_ 1718389316688805888