Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
Predicting future values of a short time series remains a challenge. Here, the authors propose an auto-reservoir computing framework, which achieved accurate and robust multistep ahead prediction by transforming high-dimensional data into temporal dynamics.
Guardado en:
Autores principales: | Pei Chen, Rui Liu, Kazuyuki Aihara, Luonan Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35fa33ae9ab44fb5afcd45a755ee15e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Two-Stage Multistep-Ahead Electricity Load Forecasting
Scheme Based on LightGBM and Attention-BiLSTM
por: Jinwoong Park, et al.
Publicado: (2021) -
Home Energy Management Algorithm Based on Deep Reinforcement Learning Using Multistep Prediction
por: Naoki Kodama, et al.
Publicado: (2021) -
Multistep nucleation of anisotropic molecules
por: Kazuaki Z. Takahashi, et al.
Publicado: (2021) -
Multistep assembly of DNA condensation clusters by SMC
por: HyeongJun Kim, et al.
Publicado: (2016) -
Publisher Correction: Multistep nucleation of anisotropic molecules
por: Kazuaki Z. Takahashi, et al.
Publicado: (2021)