Time Series Segmentation Based on Stationarity Analysis to Improve New Samples Prediction
A wide range of applications based on sequential data, named time series, have become increasingly popular in recent years, mainly those based on the Internet of Things (IoT). Several different machine learning algorithms exploit the patterns extracted from sequential data to support multiple tasks....
Guardado en:
Autores principales: | Ricardo Petri Silva, Bruno Bogaz Zarpelão, Alberto Cano, Sylvio Barbon Junior |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/35fab8c149124520ace8803a6f6d67c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Measuring the Topological Time Irreversibility of Time Series With the Degree-Vector-Based Visibility Graph Method
por: Ryutaro Mori, et al.
Publicado: (2021) -
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
por: Ajla Kulaglic, et al.
Publicado: (2021) -
El analfabetismo en Chile
por: Soto González, Zaida
Publicado: (2014) -
Una comparacion de los resultados de dos metodos para detectar abortos
por: De Jong, Johanna
Publicado: (2014) -
Estudios de series temporales demográficas mediante modelos ARIMA de Box-Jenkins: una aplicación a series de la ciudad de Rosario, Argentina
por: Cuesta, Cristina, et al.
Publicado: (2014)