A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied
Jing-Yi Ye,1 Zhong-Yun Chen,1 Chuan-Li Huang,1 Bei Huang,2 Yu-Rong Zheng,2 Ying-Feng Zhang,1 Ban-Yi Lu,2 Lin He,2 Chang-Shun Liu3 ,* Xiao-Ying Long1,4, * 1School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 2School of Chinese Medicine, Gua...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/360c833b9d1b495e93184a14733fc7dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:360c833b9d1b495e93184a14733fc7dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:360c833b9d1b495e93184a14733fc7dd2021-12-02T10:23:49ZA Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied1178-2013https://doaj.org/article/360c833b9d1b495e93184a14733fc7dd2020-08-01T00:00:00Zhttps://www.dovepress.com/a-non-lipolysis-nanoemulsion-improved-oral-bioavailability-by-reducing-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jing-Yi Ye,1 Zhong-Yun Chen,1 Chuan-Li Huang,1 Bei Huang,2 Yu-Rong Zheng,2 Ying-Feng Zhang,1 Ban-Yi Lu,2 Lin He,2 Chang-Shun Liu3 ,* Xiao-Ying Long1,4, * 1School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 2School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 3School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China; 4Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China*These authors contributed equally to this workCorrespondence: Chang-Shun LiuSouthern Medical University, No. 1023-1063 of Shatai South Road, Guangzhou, Guangdong 510515, People’s Republic of ChinaTel +86 13430301554Email lcshun1225@163.comXiao-Ying LongGuangdong Pharmaceutical University, No. 280 of Waihuan East Road, Guangzhou, Guangdong 510006, People’s Republic of ChinaTel +86 13798171092Fax +86 2039352174Email longxy3156@163.comObjective: A non-lipolysis nanoemulsion (NNE) was designed to reduce the first-pass metabolism of raloxifene (RAL) by intestinal UDP-glucuronosyltransferases (UGTs) for increasing the oral absorption of RAL, coupled with in vitro and in vivo studies.Methods: In vitro stability of NNE was evaluated by lipolysis and the UGT metabolism system. The oral bioavailability of NNE was studied in rats and pigs. Finally, the absorption mechanisms of NNE were investigated by in situ single-pass intestinal perfusion (SPIP) in rats, Madin-Darby canine kidney (MDCK) cells model, and lymphatic blocking model.Results: The pre-NNE consisted of isopropyl palmitate, linoleic acid, Cremophor RH40, and ethanol in a weight ratio of 3.33:1.67:3:2. Compared to lipolysis nanoemulsion of RAL (RAL-LNE), the RAL-NNE was more stable in in vitro gastrointestinal buffers, lipolysis, and UGT metabolism system (p < 0.05). The oral bioavailability was significantly improved by the NNE (203.30%) and the LNE (205.89%) relative to the suspension group in rats. However, 541.28% relative bioavailability was achieved in pigs after oral NNE intake compared to the suspension and had two-fold greater bioavailability than the LNE (p < 0.05). The RAL-NNE was mainly absorbed in the jejunum and had high permeability at the intestine of rats. The results of both SPIP and MDCK cell models demonstrated that the RAL-NNE was absorbed via endocytosis mediated by caveolin and clathrin. The other absorption route, the lymphatic transport (cycloheximide as blocking agent), was significantly improved by the NNE compared with the LNE (p < 0.05).Conclusion: A NNE was successfully developed to reduce the first-pass metabolism of RAL in the intestine and enhance its lymphatic transport, thereby improving the oral bioavailability. Altogether, NNE is a promising carrier for the oral delivery of drugs with significant first-pass metabolism.Keywords: non-lipolysis nanoemulsion, raloxifene, first-pass metabolism, stability, bioavailability, endocytosisYe JYChen ZYHuang CLHuang BZheng YRZhang YFLu BYHe LLiu CSLong XYDove Medical Pressarticlenon-lipolysis nanoemulsionraloxifenefirst-pass metabolismstabilitybioavailabilityendocytosisMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 6503-6518 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
non-lipolysis nanoemulsion raloxifene first-pass metabolism stability bioavailability endocytosis Medicine (General) R5-920 |
spellingShingle |
non-lipolysis nanoemulsion raloxifene first-pass metabolism stability bioavailability endocytosis Medicine (General) R5-920 Ye JY Chen ZY Huang CL Huang B Zheng YR Zhang YF Lu BY He L Liu CS Long XY A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied |
description |
Jing-Yi Ye,1 Zhong-Yun Chen,1 Chuan-Li Huang,1 Bei Huang,2 Yu-Rong Zheng,2 Ying-Feng Zhang,1 Ban-Yi Lu,2 Lin He,2 Chang-Shun Liu3 ,* Xiao-Ying Long1,4, * 1School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 2School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 3School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China; 4Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China*These authors contributed equally to this workCorrespondence: Chang-Shun LiuSouthern Medical University, No. 1023-1063 of Shatai South Road, Guangzhou, Guangdong 510515, People’s Republic of ChinaTel +86 13430301554Email lcshun1225@163.comXiao-Ying LongGuangdong Pharmaceutical University, No. 280 of Waihuan East Road, Guangzhou, Guangdong 510006, People’s Republic of ChinaTel +86 13798171092Fax +86 2039352174Email longxy3156@163.comObjective: A non-lipolysis nanoemulsion (NNE) was designed to reduce the first-pass metabolism of raloxifene (RAL) by intestinal UDP-glucuronosyltransferases (UGTs) for increasing the oral absorption of RAL, coupled with in vitro and in vivo studies.Methods: In vitro stability of NNE was evaluated by lipolysis and the UGT metabolism system. The oral bioavailability of NNE was studied in rats and pigs. Finally, the absorption mechanisms of NNE were investigated by in situ single-pass intestinal perfusion (SPIP) in rats, Madin-Darby canine kidney (MDCK) cells model, and lymphatic blocking model.Results: The pre-NNE consisted of isopropyl palmitate, linoleic acid, Cremophor RH40, and ethanol in a weight ratio of 3.33:1.67:3:2. Compared to lipolysis nanoemulsion of RAL (RAL-LNE), the RAL-NNE was more stable in in vitro gastrointestinal buffers, lipolysis, and UGT metabolism system (p < 0.05). The oral bioavailability was significantly improved by the NNE (203.30%) and the LNE (205.89%) relative to the suspension group in rats. However, 541.28% relative bioavailability was achieved in pigs after oral NNE intake compared to the suspension and had two-fold greater bioavailability than the LNE (p < 0.05). The RAL-NNE was mainly absorbed in the jejunum and had high permeability at the intestine of rats. The results of both SPIP and MDCK cell models demonstrated that the RAL-NNE was absorbed via endocytosis mediated by caveolin and clathrin. The other absorption route, the lymphatic transport (cycloheximide as blocking agent), was significantly improved by the NNE compared with the LNE (p < 0.05).Conclusion: A NNE was successfully developed to reduce the first-pass metabolism of RAL in the intestine and enhance its lymphatic transport, thereby improving the oral bioavailability. Altogether, NNE is a promising carrier for the oral delivery of drugs with significant first-pass metabolism.Keywords: non-lipolysis nanoemulsion, raloxifene, first-pass metabolism, stability, bioavailability, endocytosis |
format |
article |
author |
Ye JY Chen ZY Huang CL Huang B Zheng YR Zhang YF Lu BY He L Liu CS Long XY |
author_facet |
Ye JY Chen ZY Huang CL Huang B Zheng YR Zhang YF Lu BY He L Liu CS Long XY |
author_sort |
Ye JY |
title |
A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied |
title_short |
A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied |
title_full |
A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied |
title_fullStr |
A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied |
title_full_unstemmed |
A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied |
title_sort |
non-lipolysis nanoemulsion improved oral bioavailability by reducing the first-pass metabolism of raloxifene, and related absorption mechanisms being studied |
publisher |
Dove Medical Press |
publishDate |
2020 |
url |
https://doaj.org/article/360c833b9d1b495e93184a14733fc7dd |
work_keys_str_mv |
AT yejy anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT chenzy anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT huangcl anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT huangb anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT zhengyr anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT zhangyf anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT luby anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT hel anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT liucs anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT longxy anonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT yejy nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT chenzy nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT huangcl nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT huangb nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT zhengyr nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT zhangyf nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT luby nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT hel nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT liucs nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied AT longxy nonlipolysisnanoemulsionimprovedoralbioavailabilitybyreducingthefirstpassmetabolismofraloxifeneandrelatedabsorptionmechanismsbeingstudied |
_version_ |
1718397279726993408 |