Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization

Abstract Wheat (Triticum aestivum), one of the world’s most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaoming Wang, Ruochen Wang, Chuang Ma, Xue Shi, Zhenshan Liu, Zhonghua Wang, Qixin Sun, Jun Cao, Shengbao Xu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3617ee9513634cfbbcf58e97e9d13b73
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3617ee9513634cfbbcf58e97e9d13b73
record_format dspace
spelling oai:doaj.org-article:3617ee9513634cfbbcf58e97e9d13b732021-12-02T12:32:50ZMassive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization10.1038/s41598-017-01857-32045-2322https://doaj.org/article/3617ee9513634cfbbcf58e97e9d13b732017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01857-3https://doaj.org/toc/2045-2322Abstract Wheat (Triticum aestivum), one of the world’s most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.Xiaoming WangRuochen WangChuang MaXue ShiZhenshan LiuZhonghua WangQixin SunJun CaoShengbao XuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Xiaoming Wang
Ruochen Wang
Chuang Ma
Xue Shi
Zhenshan Liu
Zhonghua Wang
Qixin Sun
Jun Cao
Shengbao Xu
Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization
description Abstract Wheat (Triticum aestivum), one of the world’s most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.
format article
author Xiaoming Wang
Ruochen Wang
Chuang Ma
Xue Shi
Zhenshan Liu
Zhonghua Wang
Qixin Sun
Jun Cao
Shengbao Xu
author_facet Xiaoming Wang
Ruochen Wang
Chuang Ma
Xue Shi
Zhenshan Liu
Zhonghua Wang
Qixin Sun
Jun Cao
Shengbao Xu
author_sort Xiaoming Wang
title Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization
title_short Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization
title_full Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization
title_fullStr Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization
title_full_unstemmed Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization
title_sort massive expansion and differential evolution of small heat shock proteins with wheat (triticum aestivum l.) polyploidization
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/3617ee9513634cfbbcf58e97e9d13b73
work_keys_str_mv AT xiaomingwang massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT ruochenwang massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT chuangma massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT xueshi massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT zhenshanliu massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT zhonghuawang massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT qixinsun massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT juncao massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
AT shengbaoxu massiveexpansionanddifferentialevolutionofsmallheatshockproteinswithwheattriticumaestivumlpolyploidization
_version_ 1718393910846291968