A deep learning framework to predict binding preference of RNA constituents on protein surface

Interactions between proteins and RNA are an important mechanism for post-transcriptional regulation, but predicting these interactions is difficult. Through a deep learning approach, here the authors predict RNA-binding sites and binding preference based on the local physicochemical properties of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jordy Homing Lam, Yu Li, Lizhe Zhu, Ramzan Umarov, Hanlun Jiang, Amélie Héliou, Fu Kit Sheong, Tianyun Liu, Yongkang Long, Yunfei Li, Liang Fang, Russ B. Altman, Wei Chen, Xuhui Huang, Xin Gao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/361a2a5e8af64738999759aa8027bf6e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Interactions between proteins and RNA are an important mechanism for post-transcriptional regulation, but predicting these interactions is difficult. Through a deep learning approach, here the authors predict RNA-binding sites and binding preference based on the local physicochemical properties of the protein surface.