A deep learning framework to predict binding preference of RNA constituents on protein surface
Interactions between proteins and RNA are an important mechanism for post-transcriptional regulation, but predicting these interactions is difficult. Through a deep learning approach, here the authors predict RNA-binding sites and binding preference based on the local physicochemical properties of t...
Guardado en:
Autores principales: | Jordy Homing Lam, Yu Li, Lizhe Zhu, Ramzan Umarov, Hanlun Jiang, Amélie Héliou, Fu Kit Sheong, Tianyun Liu, Yongkang Long, Yunfei Li, Liang Fang, Russ B. Altman, Wei Chen, Xuhui Huang, Xin Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/361a2a5e8af64738999759aa8027bf6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment.
por: Ramzan Umarov, et al.
Publicado: (2021) -
Critical role of backbone coordination in the mRNA recognition by RNA induced silencing complex
por: Lizhe Zhu, et al.
Publicado: (2021) -
An Islamic Framework for Employer-Employee Relationships
por: M. Ramzan Akhtar
Publicado: (1992) -
ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation.
por: Ramzan Umarov, et al.
Publicado: (2021) -
CONSTITUENTS OF HELENIUM ATACAMENSE Cabr.
por: MORALES,GLAUCO, et al.
Publicado: (2006)