Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers
Abstract We investigated the feasibility and potentiality of presymptomatic detection of tobacco disease using hyperspectral imaging, combined with the variable selection method and machine-learning classifiers. Images from healthy and TMV-infected leaves with 2, 4, and 6 days post infection were ac...
Guardado en:
Autores principales: | Hongyan Zhu, Bingquan Chu, Chu Zhang, Fei Liu, Linjun Jiang, Yong He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3623b88b79654fcf87be710ee2e68d46 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Selection Algorithms and Chemometric Models
por: Hongyan Zhu, et al.
Publicado: (2017) -
A Band Influence Algorithm for Hyperspectral Band Selection to Classify Moldy Peanuts
por: Ziwei Liu, et al.
Publicado: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
por: Itiya Aneece, et al.
Publicado: (2021) -
Rotational hyperspectral scanner and related image reconstruction algorithm
por: Longqiang Luo, et al.
Publicado: (2021)