Properties of a bovine collagen type I membrane for guided bone regeneration applications
Dental implant treatment requires an available bone volume in the implantation site to ensure the implant’s mechanical stability. When the bone volume is insufficient, one must resort to surgical means such as guided bone regeneration (GBR). In GBR surgery, bone grafts and membranes are used. The ob...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/362d4ddce51149adbf32176c0a71d0dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Dental implant treatment requires an available bone volume in the implantation site to ensure the implant’s mechanical stability. When the bone volume is insufficient, one must resort to surgical means such as guided bone regeneration (GBR). In GBR surgery, bone grafts and membranes are used. The objective of this work is to manufacture and characterize the in vitro and in vivo properties of resorbable collagen type I membranes (Green Membrane®) for GBR. Membrane surface morphology was characterized by SEM and roughness was measured using an interferometric noncontact 3D system. In vivo skin sensitization and toxicity tests have been performed on Wistar rats. Bone defects were prepared in 24 adult male rats, filled with biomaterials (Blue Bone® and Bio Oss®) and covered with collagen membranes to maintain the mechanical stability of the site for bone regeneration. The incisions were closed with simple stitches; and 60 days after the surgery, the animals were euthanized. Results showed that the analyzed membrane was homogeneous, with collagen fiber webs and open pores. It had no sign of cytotoxicity and the cells at the insertion site showed no bone morphological changes. There was no tissue reaction and no statistical difference between Blue Bone® and Bio Oss® groups. The proposed membrane has no cytotoxicity and displays a biocompatibility profile that makes it suitable for GBR. |
---|