Collaborative driving style classification method enabled by majority voting ensemble learning for enhancing classification performance.
The classification of driving styles plays a fundamental role in evaluating drivers' driving behaviors, which is of great significance to traffic safety. However, it still suffers from various challenges, including the insufficient accuracy of the model, the large amount of training parameters,...
Guardado en:
Autores principales: | Yi Guo, Xiaolan Wang, Yongmao Huang, Liang Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/362e75d28a2940e5b74f2410e72d851a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Content-based fake news classification through modified voting ensemble
por: Jose Fabio Ribeiro Bezerra
Publicado: (2021) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
por: Victor Chukwudi Osamor, et al.
Publicado: (2021) -
Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
por: Yangqianhui Zhang, et al.
Publicado: (2021) -
A Multi-Feature Ensemble Learning Classification Method for Ship Classification with Space-Based AIS Data
por: Yitao Wang, et al.
Publicado: (2021) -
Genome majority vote improves gene predictions.
por: Michael E Wall, et al.
Publicado: (2011)