Collaborative driving style classification method enabled by majority voting ensemble learning for enhancing classification performance.
The classification of driving styles plays a fundamental role in evaluating drivers' driving behaviors, which is of great significance to traffic safety. However, it still suffers from various challenges, including the insufficient accuracy of the model, the large amount of training parameters,...
Enregistré dans:
Auteurs principaux: | Yi Guo, Xiaolan Wang, Yongmao Huang, Liang Xu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/362e75d28a2940e5b74f2410e72d851a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Content-based fake news classification through modified voting ensemble
par: Jose Fabio Ribeiro Bezerra
Publié: (2021) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
par: Victor Chukwudi Osamor, et autres
Publié: (2021) -
Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
par: Yangqianhui Zhang, et autres
Publié: (2021) -
A Multi-Feature Ensemble Learning Classification Method for Ship Classification with Space-Based AIS Data
par: Yitao Wang, et autres
Publié: (2021) -
Genome majority vote improves gene predictions.
par: Michael E Wall, et autres
Publié: (2011)