Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator

Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly v...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael Jahn, Nick Crang, Markus Janasch, Andreas Hober, Björn Forsström, Kyle Kimler, Alexander Mattausch, Qi Chen, Johannes Asplund-Samuelsson, Elton Paul Hudson
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3631e860f20c479ab63f583005d0297c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3631e860f20c479ab63f583005d0297c
record_format dspace
spelling oai:doaj.org-article:3631e860f20c479ab63f583005d0297c2021-11-16T17:58:41ZProtein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator10.7554/eLife.690192050-084Xe69019https://doaj.org/article/3631e860f20c479ab63f583005d0297c2021-11-01T00:00:00Zhttps://elifesciences.org/articles/69019https://doaj.org/toc/2050-084XBacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.Michael JahnNick CrangMarkus JanaschAndreas HoberBjörn ForsströmKyle KimlerAlexander MattauschQi ChenJohannes Asplund-SamuelssonElton Paul HudsoneLife Sciences Publications LtdarticleCupriavidus necatorRalstonia eutropharesource balance analysissubstrate limitationco2 fixationgene fitnessMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Cupriavidus necator
Ralstonia eutropha
resource balance analysis
substrate limitation
co2 fixation
gene fitness
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle Cupriavidus necator
Ralstonia eutropha
resource balance analysis
substrate limitation
co2 fixation
gene fitness
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Michael Jahn
Nick Crang
Markus Janasch
Andreas Hober
Björn Forsström
Kyle Kimler
Alexander Mattausch
Qi Chen
Johannes Asplund-Samuelsson
Elton Paul Hudson
Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
description Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.
format article
author Michael Jahn
Nick Crang
Markus Janasch
Andreas Hober
Björn Forsström
Kyle Kimler
Alexander Mattausch
Qi Chen
Johannes Asplund-Samuelsson
Elton Paul Hudson
author_facet Michael Jahn
Nick Crang
Markus Janasch
Andreas Hober
Björn Forsström
Kyle Kimler
Alexander Mattausch
Qi Chen
Johannes Asplund-Samuelsson
Elton Paul Hudson
author_sort Michael Jahn
title Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
title_short Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
title_full Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
title_fullStr Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
title_full_unstemmed Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator
title_sort protein allocation and utilization in the versatile chemolithoautotroph cupriavidus necator
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/3631e860f20c479ab63f583005d0297c
work_keys_str_mv AT michaeljahn proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT nickcrang proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT markusjanasch proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT andreashober proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT bjornforsstrom proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT kylekimler proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT alexandermattausch proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT qichen proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT johannesasplundsamuelsson proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
AT eltonpaulhudson proteinallocationandutilizationintheversatilechemolithoautotrophcupriavidusnecator
_version_ 1718426230177398784