Input–output maps are strongly biased towards simple outputs

Algorithmic information theory measures the complexity of strings. Here the authors provide a practical bound on the probability that a randomly generated computer program produces a given output of a given complexity and apply this upper bound to RNA folding and financial trading algorithms.

Guardado en:
Detalles Bibliográficos
Autores principales: Kamaludin Dingle, Chico Q. Camargo, Ard A. Louis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/363ccf311ef84afb8dc713f2b793d461
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Algorithmic information theory measures the complexity of strings. Here the authors provide a practical bound on the probability that a randomly generated computer program produces a given output of a given complexity and apply this upper bound to RNA folding and financial trading algorithms.