Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
Abstract Quantum Hall ferromagnetic transitions are typically achieved by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between...
Enregistré dans:
Auteurs principaux: | , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3650b9ac5e904b8392c3e5a072007ba9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract Quantum Hall ferromagnetic transitions are typically achieved by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 1010 cm−2, this ratio grows greater than 1, resulting in a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. Such gate-controlled spin-polarizations in the quantum Hall regime opens the door to realizing Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors. |
---|