Analysis of compositions of microbiomes with bias correction
Differential abundance analysis of microbiome data continues to be challenging due to data complexity. The authors propose a method which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples.
Guardado en:
Autores principales: | Huang Lin, Shyamal Das Peddada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3652022ed6a7403aa4db2996430cdd4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
por: Verónica Lloréns-Rico, et al.
Publicado: (2021) -
Deep learning for bias correction of MJO prediction
por: H. Kim, et al.
Publicado: (2021) -
Metagenomic analysis of the gut microbiome composition associated with vitamin D supplementation in Taiwanese infants
por: Wei-Te Lei, et al.
Publicado: (2021) -
Publisher Correction: Causes of model dry and warm bias over central U.S. and impact on climate projections
por: Yanluan Lin, et al.
Publicado: (2018) -
Publisher Correction: Mnemonic prediction errors bias hippocampal states
por: Oded Bein, et al.
Publicado: (2020)