Machine Learning in Network Anomaly Detection: A Survey
Anomalies could be the threats to the network that have ever/never happened. To protect networks against malicious access is always challenging even though it has been studied for a long time. Due to the evolution of network in both new technologies and fast growth of connected devices, network atta...
Guardado en:
Autores principales: | Song Wang, Juan Fernando Balarezo, Sithamparanathan Kandeepan, Akram Al-Hourani, Karina Gomez Chavez, Benjamin Rubinstein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/365bbd791aa24ac0a84c447c4d5da395 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A survey of Blockchain technologies applied to software‐defined networking: Research challenges and solutions
por: Hai Nam Nguyen, et al.
Publicado: (2021) -
Intelligent Performance Prediction: The Use Case of a Hadoop Cluster
por: Dimitris Uzunidis, et al.
Publicado: (2021) -
A Flexible Forwarding System for Experiments in Information-Centric Networking
por: Fan Yang, et al.
Publicado: (2021) -
An Approach to Detect Anomaly in Video Using Deep Generative Network
por: Savath Saypadith, et al.
Publicado: (2021) -
A Novel Intrusion Detection Approach Using Machine Learning Ensemble for IoT Environments
por: Parag Verma, et al.
Publicado: (2021)