Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique
Novel Chitosan-g-Octanal Schiff base amphiphilic polymer has been developed by click grafting technique and evaluated successfully in removing different types of oils spills. The chemical structure and the morphological changes of the developed Chitosan-g-Octanal Schiff base amphiphilic polymer have...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/366bb123886943bc8959637d96397a66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:366bb123886943bc8959637d96397a66 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:366bb123886943bc8959637d96397a662021-11-22T04:19:45ZRemoval of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique1319-610310.1016/j.jscs.2021.101369https://doaj.org/article/366bb123886943bc8959637d96397a662021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1319610321001745https://doaj.org/toc/1319-6103Novel Chitosan-g-Octanal Schiff base amphiphilic polymer has been developed by click grafting technique and evaluated successfully in removing different types of oils spills. The chemical structure and the morphological changes of the developed Chitosan-g-Octanal Schiff base amphiphilic polymer have been followed using FT-IR spectroscopy and SEM. The amphiphilic character of the developed Chitosan-g-Octanal Schiff base polymer has been controlled through variations of the Octanal grafting percentages from 38% to 82%. Dramatic changes of the Chitosan-g-Octanal Schiff base polymer solubility have been founded. The ion exchange capacity and water uptake have been affected in the same manner. The oils adsorption capacity was founded in direct relation to the Octanal grafting percentages and followed the order: mineral < kerosene < diesel < light crude oil (LCO) < heavy crude oil (HCO). Operational conditions such as oil amount, adsorption time, adsorbent dose, and agitation speed have been studied. The oil adsorption capacity of the Chitosan-g-Octanal Schiff base polymer for light and heavy crude oil has been increased by 167% and 110% over Chitosan ones. Finally, the removal process is optimized using response surface methodology (RSM).Tamer Mahmoud TamerBasant Yossry EweidaAhmed Mohamed OmerHesham M.A. SolimanSafaa Mohamed AliAhmed Amin ZaatotMohamed Samir Mohy-EldinElsevierarticleAmphiphilic Chitosan-g-OctanalSchiff baseOil spill removalAdsorption capacityRSMChemistryQD1-999ENJournal of Saudi Chemical Society, Vol 25, Iss 12, Pp 101369- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Amphiphilic Chitosan-g-Octanal Schiff base Oil spill removal Adsorption capacity RSM Chemistry QD1-999 |
spellingShingle |
Amphiphilic Chitosan-g-Octanal Schiff base Oil spill removal Adsorption capacity RSM Chemistry QD1-999 Tamer Mahmoud Tamer Basant Yossry Eweida Ahmed Mohamed Omer Hesham M.A. Soliman Safaa Mohamed Ali Ahmed Amin Zaatot Mohamed Samir Mohy-Eldin Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique |
description |
Novel Chitosan-g-Octanal Schiff base amphiphilic polymer has been developed by click grafting technique and evaluated successfully in removing different types of oils spills. The chemical structure and the morphological changes of the developed Chitosan-g-Octanal Schiff base amphiphilic polymer have been followed using FT-IR spectroscopy and SEM. The amphiphilic character of the developed Chitosan-g-Octanal Schiff base polymer has been controlled through variations of the Octanal grafting percentages from 38% to 82%. Dramatic changes of the Chitosan-g-Octanal Schiff base polymer solubility have been founded. The ion exchange capacity and water uptake have been affected in the same manner. The oils adsorption capacity was founded in direct relation to the Octanal grafting percentages and followed the order: mineral < kerosene < diesel < light crude oil (LCO) < heavy crude oil (HCO). Operational conditions such as oil amount, adsorption time, adsorbent dose, and agitation speed have been studied. The oil adsorption capacity of the Chitosan-g-Octanal Schiff base polymer for light and heavy crude oil has been increased by 167% and 110% over Chitosan ones. Finally, the removal process is optimized using response surface methodology (RSM). |
format |
article |
author |
Tamer Mahmoud Tamer Basant Yossry Eweida Ahmed Mohamed Omer Hesham M.A. Soliman Safaa Mohamed Ali Ahmed Amin Zaatot Mohamed Samir Mohy-Eldin |
author_facet |
Tamer Mahmoud Tamer Basant Yossry Eweida Ahmed Mohamed Omer Hesham M.A. Soliman Safaa Mohamed Ali Ahmed Amin Zaatot Mohamed Samir Mohy-Eldin |
author_sort |
Tamer Mahmoud Tamer |
title |
Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique |
title_short |
Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique |
title_full |
Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique |
title_fullStr |
Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique |
title_full_unstemmed |
Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique |
title_sort |
removal of oil spills by novel amphiphilic chitosan-g-octanal schiff base polymer developed by click grafting technique |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/366bb123886943bc8959637d96397a66 |
work_keys_str_mv |
AT tamermahmoudtamer removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique AT basantyossryeweida removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique AT ahmedmohamedomer removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique AT heshammasoliman removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique AT safaamohamedali removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique AT ahmedaminzaatot removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique AT mohamedsamirmohyeldin removalofoilspillsbynovelamphiphilicchitosangoctanalschiffbasepolymerdevelopedbyclickgraftingtechnique |
_version_ |
1718418215124598784 |