Bioartificial heart: a human-sized porcine model--the way ahead.

<h4>Background</h4>A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexander Weymann, Nikhil Prakash Patil, Anton Sabashnikov, Philipp Jungebluth, Sevil Korkmaz, Shiliang Li, Gabor Veres, Pal Soos, Roland Ishtok, Nicole Chaimow, Ines Pätzold, Natalie Czerny, Carsten Schies, Bastian Schmack, Aron-Frederik Popov, André Rüdiger Simon, Matthias Karck, Gabor Szabo
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/36718c18f9bb4aa4a1b9c3aed1529751
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:36718c18f9bb4aa4a1b9c3aed1529751
record_format dspace
spelling oai:doaj.org-article:36718c18f9bb4aa4a1b9c3aed15297512021-11-25T05:54:46ZBioartificial heart: a human-sized porcine model--the way ahead.1932-620310.1371/journal.pone.0111591https://doaj.org/article/36718c18f9bb4aa4a1b9c3aed15297512014-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0111591https://doaj.org/toc/1932-6203<h4>Background</h4>A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts.<h4>Methods</h4>We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions.<h4>Results</h4>Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks.<h4>Conclusions</h4>Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.Alexander WeymannNikhil Prakash PatilAnton SabashnikovPhilipp JungebluthSevil KorkmazShiliang LiGabor VeresPal SoosRoland IshtokNicole ChaimowInes PätzoldNatalie CzernyCarsten SchiesBastian SchmackAron-Frederik PopovAndré Rüdiger SimonMatthias KarckGabor SzaboPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 11, p e111591 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alexander Weymann
Nikhil Prakash Patil
Anton Sabashnikov
Philipp Jungebluth
Sevil Korkmaz
Shiliang Li
Gabor Veres
Pal Soos
Roland Ishtok
Nicole Chaimow
Ines Pätzold
Natalie Czerny
Carsten Schies
Bastian Schmack
Aron-Frederik Popov
André Rüdiger Simon
Matthias Karck
Gabor Szabo
Bioartificial heart: a human-sized porcine model--the way ahead.
description <h4>Background</h4>A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts.<h4>Methods</h4>We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions.<h4>Results</h4>Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks.<h4>Conclusions</h4>Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.
format article
author Alexander Weymann
Nikhil Prakash Patil
Anton Sabashnikov
Philipp Jungebluth
Sevil Korkmaz
Shiliang Li
Gabor Veres
Pal Soos
Roland Ishtok
Nicole Chaimow
Ines Pätzold
Natalie Czerny
Carsten Schies
Bastian Schmack
Aron-Frederik Popov
André Rüdiger Simon
Matthias Karck
Gabor Szabo
author_facet Alexander Weymann
Nikhil Prakash Patil
Anton Sabashnikov
Philipp Jungebluth
Sevil Korkmaz
Shiliang Li
Gabor Veres
Pal Soos
Roland Ishtok
Nicole Chaimow
Ines Pätzold
Natalie Czerny
Carsten Schies
Bastian Schmack
Aron-Frederik Popov
André Rüdiger Simon
Matthias Karck
Gabor Szabo
author_sort Alexander Weymann
title Bioartificial heart: a human-sized porcine model--the way ahead.
title_short Bioartificial heart: a human-sized porcine model--the way ahead.
title_full Bioartificial heart: a human-sized porcine model--the way ahead.
title_fullStr Bioartificial heart: a human-sized porcine model--the way ahead.
title_full_unstemmed Bioartificial heart: a human-sized porcine model--the way ahead.
title_sort bioartificial heart: a human-sized porcine model--the way ahead.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/36718c18f9bb4aa4a1b9c3aed1529751
work_keys_str_mv AT alexanderweymann bioartificialheartahumansizedporcinemodelthewayahead
AT nikhilprakashpatil bioartificialheartahumansizedporcinemodelthewayahead
AT antonsabashnikov bioartificialheartahumansizedporcinemodelthewayahead
AT philippjungebluth bioartificialheartahumansizedporcinemodelthewayahead
AT sevilkorkmaz bioartificialheartahumansizedporcinemodelthewayahead
AT shiliangli bioartificialheartahumansizedporcinemodelthewayahead
AT gaborveres bioartificialheartahumansizedporcinemodelthewayahead
AT palsoos bioartificialheartahumansizedporcinemodelthewayahead
AT rolandishtok bioartificialheartahumansizedporcinemodelthewayahead
AT nicolechaimow bioartificialheartahumansizedporcinemodelthewayahead
AT inespatzold bioartificialheartahumansizedporcinemodelthewayahead
AT natalieczerny bioartificialheartahumansizedporcinemodelthewayahead
AT carstenschies bioartificialheartahumansizedporcinemodelthewayahead
AT bastianschmack bioartificialheartahumansizedporcinemodelthewayahead
AT aronfrederikpopov bioartificialheartahumansizedporcinemodelthewayahead
AT andrerudigersimon bioartificialheartahumansizedporcinemodelthewayahead
AT matthiaskarck bioartificialheartahumansizedporcinemodelthewayahead
AT gaborszabo bioartificialheartahumansizedporcinemodelthewayahead
_version_ 1718414391500603392