Region-Based Convolutional Neural Network for Wind Turbine Wake Characterization in Complex Terrain
We present a proof of concept of wind turbine wake identification and characterization using a region-based convolutional neural network (CNN) applied to lidar arc scan images taken at a wind farm in complex terrain. We show that the CNN successfully identifies and characterizes wakes in scans with...
Guardado en:
Autores principales: | Jeanie A. Aird, Eliot W. Quon, Rebecca J. Barthelmie, Mithu Debnath, Paula Doubrawa, Sara C. Pryor |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36772c8fdc2b464cb6bde6b1ac612052 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the Wind Turbine Wake and Forest Terrain Interaction
por: Shyuan Cheng, et al.
Publicado: (2021) -
The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake
por: Jennifer Marie Rinker, et al.
Publicado: (2021) -
Experimental study on the characteristics of wind turbine wake field considering yaw conditions
por: Xiuyong Zhao, et al.
Publicado: (2021) -
Coherent vorticity dynamics and dissipation in a utility-scale wind turbine wake with uniform inflow
por: Daniel Foti
Publicado: (2021) -
Effects of Damaged Rotor on Wake Dynamics of Vertical Axis Wind Turbines
por: Taimoor Asim, et al.
Publicado: (2021)