Unified Transformer Multi-Task Learning for Intent Classification With Entity Recognition
Intent classification (IC) and Named Entity Recognition (NER) are arguably the two main components needed to build a Natural Language Understanding (NLU) engine, which is a main component of conversational agents. The IC and NER components are closely intertwined and the entities are often connected...
Guardado en:
Autores principales: | Alberto Benayas, Reyhaneh Hashempour, Damian Rumble, Shoaib Jameel, Renato Cordeiro De Amorim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/367a5f976a734b5e8f1d82fe5e13a322 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Domain Specific Entity Recognition With Semantic-Based Deep Learning Approach
por: Quoc Hung Ngo, et al.
Publicado: (2021) -
Named Entity Recognition in Electric Power Metering Domain Based on Attention Mechanism
por: Kaihong Zheng, et al.
Publicado: (2021) -
GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning
por: Qinjun Qiu, et al.
Publicado: (2019) -
Ensemble of Deep Masked Language Models for Effective Named Entity Recognition in Health and Life Science Corpora
por: Nona Naderi, et al.
Publicado: (2021) -
Enhancing Korean Named Entity Recognition With Linguistic Tokenization Strategies
por: Gyeongmin Kim, et al.
Publicado: (2021)