Measuring System Design and Experiment for Ground Pressure on Seeding Skateboard of Rice Direct Seeding Machine
Acquiring real-time ground pressure measurements from the surface of the soil in working parts of paddy fields is a challenging task. The real-time data can be used to monitor the changing state of the ground pressure of the working parts in a paddy field. To effectively reduce the accumulation of c...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/367caec818af482b84cbd9235ee06b3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Acquiring real-time ground pressure measurements from the surface of the soil in working parts of paddy fields is a challenging task. The real-time data can be used to monitor the changing state of the ground pressure of the working parts in a paddy field. To effectively reduce the accumulation of choked mud at the front end of the seeding skateboard and the contact adhesion between the skateboard and the paddy soil, a ground pressure measuring device suitable for paddy fields was designed. The device uses an Arduino controller, combined with Internet of things technology and wireless measurement technology. It can measure the pressure from 16 measuring points at the same time and transmit the measurement data to the computer remotely through the Internet of things technology, which greatly reduces the labor intensity of measuring personnel in the muddy paddy field. Analysis of the data showed that the forward tilt angle, ground pressure, and forward resistance of the seeding skateboard also increased with the increase of forward speed and vertical load. In addition, the distribution law of the ground pressure between the skateboard and the paddy soil was obtained. The conclusions show that the ground pressure measurement system can work stably in the paddy field and the measured data can be wirelessly transmitted to the computer and mobile phone. |
---|