On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey
The theory of Ulam stability was initiated by a problem raised in 1940 by S. Ulam and concerning approximate solutions to the equation of homomorphism in groups. It is somehow connected to various other areas of investigation such as, e.g., optimization and approximation theory. Its main issue is th...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3680c80f6fec4e16ad02d7e80720cc10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3680c80f6fec4e16ad02d7e80720cc10 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3680c80f6fec4e16ad02d7e80720cc102021-11-25T19:07:31ZOn Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey10.3390/sym131122002073-8994https://doaj.org/article/3680c80f6fec4e16ad02d7e80720cc102021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2200https://doaj.org/toc/2073-8994The theory of Ulam stability was initiated by a problem raised in 1940 by S. Ulam and concerning approximate solutions to the equation of homomorphism in groups. It is somehow connected to various other areas of investigation such as, e.g., optimization and approximation theory. Its main issue is the error that we make when replacing functions satisfying the equation approximately with exact solutions of the equation. This article is a survey of the published so far results on Ulam stability for functional equations in 2-normed spaces. We present and discuss them, pointing to the various pitfalls they contain and showing possible simple generalizations. In this way, in particular, we demonstrate that the easily noticeable symmetry between them and the analogous results obtained for the classical metric or normed spaces is in fact only apparent.Anna BahyryczJanusz BrzdękEl-sayed El-hadyZbigniew LeśniakMDPI AGarticleUlam stabilityfunctional equation2-norm<i>n</i>-normMathematicsQA1-939ENSymmetry, Vol 13, Iss 2200, p 2200 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ulam stability functional equation 2-norm <i>n</i>-norm Mathematics QA1-939 |
spellingShingle |
Ulam stability functional equation 2-norm <i>n</i>-norm Mathematics QA1-939 Anna Bahyrycz Janusz Brzdęk El-sayed El-hady Zbigniew Leśniak On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey |
description |
The theory of Ulam stability was initiated by a problem raised in 1940 by S. Ulam and concerning approximate solutions to the equation of homomorphism in groups. It is somehow connected to various other areas of investigation such as, e.g., optimization and approximation theory. Its main issue is the error that we make when replacing functions satisfying the equation approximately with exact solutions of the equation. This article is a survey of the published so far results on Ulam stability for functional equations in 2-normed spaces. We present and discuss them, pointing to the various pitfalls they contain and showing possible simple generalizations. In this way, in particular, we demonstrate that the easily noticeable symmetry between them and the analogous results obtained for the classical metric or normed spaces is in fact only apparent. |
format |
article |
author |
Anna Bahyrycz Janusz Brzdęk El-sayed El-hady Zbigniew Leśniak |
author_facet |
Anna Bahyrycz Janusz Brzdęk El-sayed El-hady Zbigniew Leśniak |
author_sort |
Anna Bahyrycz |
title |
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey |
title_short |
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey |
title_full |
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey |
title_fullStr |
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey |
title_full_unstemmed |
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey |
title_sort |
on ulam stability of functional equations in 2-normed spaces—a survey |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3680c80f6fec4e16ad02d7e80720cc10 |
work_keys_str_mv |
AT annabahyrycz onulamstabilityoffunctionalequationsin2normedspacesasurvey AT januszbrzdek onulamstabilityoffunctionalequationsin2normedspacesasurvey AT elsayedelhady onulamstabilityoffunctionalequationsin2normedspacesasurvey AT zbigniewlesniak onulamstabilityoffunctionalequationsin2normedspacesasurvey |
_version_ |
1718410269828317184 |