Maximum principle for higher order operators in general domains

We first prove De Giorgi type level estimates for functions in W1,t(Ω), Ω⊂RN$ \Omega\subset{\mathbb R}^N $, with t>N≥2$ t \gt N\geq 2 $. This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cassani Daniele, Tarsia Antonio
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/368a5e7b8ef14ed7b9353e188f331605
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We first prove De Giorgi type level estimates for functions in W1,t(Ω), Ω⊂RN$ \Omega\subset{\mathbb R}^N $, with t>N≥2$ t \gt N\geq 2 $. This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtained in Di Benedetto–Trudinger [10] for functions in W1,2(Ω). As a consequence, we prove the validity of the strong maximum principle for uniformly elliptic operators of any even order, in fairly general domains in dimension two and three, provided second order derivatives are taken into account.