Maximum principle for higher order operators in general domains

We first prove De Giorgi type level estimates for functions in W1,t(Ω), Ω⊂RN$ \Omega\subset{\mathbb R}^N $, with t>N≥2$ t \gt N\geq 2 $. This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cassani Daniele, Tarsia Antonio
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/368a5e7b8ef14ed7b9353e188f331605
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:368a5e7b8ef14ed7b9353e188f331605
record_format dspace
spelling oai:doaj.org-article:368a5e7b8ef14ed7b9353e188f3316052021-12-05T14:10:40ZMaximum principle for higher order operators in general domains2191-94962191-950X10.1515/anona-2021-0210https://doaj.org/article/368a5e7b8ef14ed7b9353e188f3316052021-11-01T00:00:00Zhttps://doi.org/10.1515/anona-2021-0210https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XWe first prove De Giorgi type level estimates for functions in W1,t(Ω), Ω⊂RN$ \Omega\subset{\mathbb R}^N $, with t>N≥2$ t \gt N\geq 2 $. This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtained in Di Benedetto–Trudinger [10] for functions in W1,2(Ω). As a consequence, we prove the validity of the strong maximum principle for uniformly elliptic operators of any even order, in fairly general domains in dimension two and three, provided second order derivatives are taken into account.Cassani DanieleTarsia AntonioDe Gruyterarticleharnack’s inequalityhigher order pdespolyharmonic operatorspositivity preserving property35j3035j4835b50AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 655-671 (2021)
institution DOAJ
collection DOAJ
language EN
topic harnack’s inequality
higher order pdes
polyharmonic operators
positivity preserving property
35j30
35j48
35b50
Analysis
QA299.6-433
spellingShingle harnack’s inequality
higher order pdes
polyharmonic operators
positivity preserving property
35j30
35j48
35b50
Analysis
QA299.6-433
Cassani Daniele
Tarsia Antonio
Maximum principle for higher order operators in general domains
description We first prove De Giorgi type level estimates for functions in W1,t(Ω), Ω⊂RN$ \Omega\subset{\mathbb R}^N $, with t>N≥2$ t \gt N\geq 2 $. This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtained in Di Benedetto–Trudinger [10] for functions in W1,2(Ω). As a consequence, we prove the validity of the strong maximum principle for uniformly elliptic operators of any even order, in fairly general domains in dimension two and three, provided second order derivatives are taken into account.
format article
author Cassani Daniele
Tarsia Antonio
author_facet Cassani Daniele
Tarsia Antonio
author_sort Cassani Daniele
title Maximum principle for higher order operators in general domains
title_short Maximum principle for higher order operators in general domains
title_full Maximum principle for higher order operators in general domains
title_fullStr Maximum principle for higher order operators in general domains
title_full_unstemmed Maximum principle for higher order operators in general domains
title_sort maximum principle for higher order operators in general domains
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/368a5e7b8ef14ed7b9353e188f331605
work_keys_str_mv AT cassanidaniele maximumprincipleforhigherorderoperatorsingeneraldomains
AT tarsiaantonio maximumprincipleforhigherorderoperatorsingeneraldomains
_version_ 1718371834030718976