Maximum principle for higher order operators in general domains
We first prove De Giorgi type level estimates for functions in W1,t(Ω), Ω⊂RN$ \Omega\subset{\mathbb R}^N $, with t>N≥2$ t \gt N\geq 2 $. This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtai...
Guardado en:
Autores principales: | Cassani Daniele, Tarsia Antonio |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/368a5e7b8ef14ed7b9353e188f331605 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Existence and concentration of positive solutions for a critical p&q equation
por: Costa Gustavo S., et al.
Publicado: (2021) -
On the uniqueness for weak solutions of steady double-phase fluids
por: Abdelwahed Mohamed, et al.
Publicado: (2021) -
Positive solutions for (p, q)-equations with convection and a sign-changing reaction
por: Zeng Shengda, et al.
Publicado: (2021) -
Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
por: Manouni Said El, et al.
Publicado: (2021) -
Ground state solutions to a class of critical Schrödinger problem
por: Mao Anmin, et al.
Publicado: (2021)