Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces

Abstract Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wenrui Zhang, Jie Zhang, Shaobo Cheng, Christopher M. Rouleau, Kim Kisslinger, Lihua Zhang, Yimei Zhu, Thomas Z. Ward, Gyula Eres
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
T
Acceso en línea:https://doaj.org/article/368b39dbd6d743499f1e822b996c9160
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:368b39dbd6d743499f1e822b996c9160
record_format dspace
spelling oai:doaj.org-article:368b39dbd6d743499f1e822b996c91602021-12-05T12:04:54ZExploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces10.1007/s40820-021-00752-x2311-67062150-5551https://doaj.org/article/368b39dbd6d743499f1e822b996c91602021-12-01T00:00:00Zhttps://doi.org/10.1007/s40820-021-00752-xhttps://doaj.org/toc/2311-6706https://doaj.org/toc/2150-5551Abstract Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice. Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite (BM) phase in a model oxide La0.7Sr0.3MnO3 (LSMO). Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO. Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO. Using the NiO nominal ratio as a single control parameter, we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase, which enables systematic tuning of magnetic and electrical transport properties. The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.Wenrui ZhangJie ZhangShaobo ChengChristopher M. RouleauKim KisslingerLihua ZhangYimei ZhuThomas Z. WardGyula EresSpringerOpenarticleEpitaxial interfaceNanocompositeFunctional oxidesOxygen vacancyTopotactic phase transitionTechnologyTENNano-Micro Letters, Vol 14, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Epitaxial interface
Nanocomposite
Functional oxides
Oxygen vacancy
Topotactic phase transition
Technology
T
spellingShingle Epitaxial interface
Nanocomposite
Functional oxides
Oxygen vacancy
Topotactic phase transition
Technology
T
Wenrui Zhang
Jie Zhang
Shaobo Cheng
Christopher M. Rouleau
Kim Kisslinger
Lihua Zhang
Yimei Zhu
Thomas Z. Ward
Gyula Eres
Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
description Abstract Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice. Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite (BM) phase in a model oxide La0.7Sr0.3MnO3 (LSMO). Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO. Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO. Using the NiO nominal ratio as a single control parameter, we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase, which enables systematic tuning of magnetic and electrical transport properties. The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.
format article
author Wenrui Zhang
Jie Zhang
Shaobo Cheng
Christopher M. Rouleau
Kim Kisslinger
Lihua Zhang
Yimei Zhu
Thomas Z. Ward
Gyula Eres
author_facet Wenrui Zhang
Jie Zhang
Shaobo Cheng
Christopher M. Rouleau
Kim Kisslinger
Lihua Zhang
Yimei Zhu
Thomas Z. Ward
Gyula Eres
author_sort Wenrui Zhang
title Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
title_short Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
title_full Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
title_fullStr Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
title_full_unstemmed Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
title_sort exploring the spatial control of topotactic phase transitions using vertically oriented epitaxial interfaces
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/368b39dbd6d743499f1e822b996c9160
work_keys_str_mv AT wenruizhang exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT jiezhang exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT shaobocheng exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT christophermrouleau exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT kimkisslinger exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT lihuazhang exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT yimeizhu exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT thomaszward exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
AT gyulaeres exploringthespatialcontroloftopotacticphasetransitionsusingverticallyorientedepitaxialinterfaces
_version_ 1718372246321364992