Trace-Inequalities and Matrix-Convex Functions

A real-valued continuous function f(t) on an interval (α,β) gives rise to a map X↦f(X) via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provide...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tsuyoshi Ando
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2010
Materias:
Acceso en línea:https://doaj.org/article/36903d6be51c438ba447b08ba0fdb894
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A real-valued continuous function f(t) on an interval (α,β) gives rise to a map X↦f(X) via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: Tr(f(B)−f(A))(C−B)≤Tr(f(C)−f(B))(B−A) for A≤B≤C. A related topic will be also discussed.