Trace-Inequalities and Matrix-Convex Functions
A real-valued continuous function f(t) on an interval (α,β) gives rise to a map X↦f(X) via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provide...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36903d6be51c438ba447b08ba0fdb894 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:36903d6be51c438ba447b08ba0fdb894 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:36903d6be51c438ba447b08ba0fdb8942021-12-02T11:18:55ZTrace-Inequalities and Matrix-Convex Functions10.1155/2010/2419081687-18201687-1812https://doaj.org/article/36903d6be51c438ba447b08ba0fdb8942010-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2010/241908https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812A real-valued continuous function f(t) on an interval (α,β) gives rise to a map X↦f(X) via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: Tr(f(B)−f(A))(C−B)≤Tr(f(C)−f(B))(B−A) for A≤B≤C. A related topic will be also discussed. Tsuyoshi AndoSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2010 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Tsuyoshi Ando Trace-Inequalities and Matrix-Convex Functions |
description |
A real-valued continuous function f(t) on an interval (α,β) gives rise to a map X↦f(X) via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: Tr(f(B)−f(A))(C−B)≤Tr(f(C)−f(B))(B−A) for A≤B≤C. A related topic will be also discussed. |
format |
article |
author |
Tsuyoshi Ando |
author_facet |
Tsuyoshi Ando |
author_sort |
Tsuyoshi Ando |
title |
Trace-Inequalities and Matrix-Convex Functions |
title_short |
Trace-Inequalities and Matrix-Convex Functions |
title_full |
Trace-Inequalities and Matrix-Convex Functions |
title_fullStr |
Trace-Inequalities and Matrix-Convex Functions |
title_full_unstemmed |
Trace-Inequalities and Matrix-Convex Functions |
title_sort |
trace-inequalities and matrix-convex functions |
publisher |
SpringerOpen |
publishDate |
2010 |
url |
https://doaj.org/article/36903d6be51c438ba447b08ba0fdb894 |
work_keys_str_mv |
AT tsuyoshiando traceinequalitiesandmatrixconvexfunctions |
_version_ |
1718395987639140352 |