Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses
Abstract It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3693a39062d9445bb2927ce0bb4b9fa5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3693a39062d9445bb2927ce0bb4b9fa5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3693a39062d9445bb2927ce0bb4b9fa52021-12-02T15:05:28ZAdaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses10.1038/s41598-017-11348-02045-2322https://doaj.org/article/3693a39062d9445bb2927ce0bb4b9fa52017-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-11348-0https://doaj.org/toc/2045-2322Abstract It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.Sehee ParkJin Il KimIlseob LeeJoon-Yong BaeKirim YooMisun NamJuwon KimMee Sook ParkKi-Joon SongJin-Won SongSun-Ho KeeMan-Seong ParkNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sehee Park Jin Il Kim Ilseob Lee Joon-Yong Bae Kirim Yoo Misun Nam Juwon Kim Mee Sook Park Ki-Joon Song Jin-Won Song Sun-Ho Kee Man-Seong Park Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses |
description |
Abstract It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs. |
format |
article |
author |
Sehee Park Jin Il Kim Ilseob Lee Joon-Yong Bae Kirim Yoo Misun Nam Juwon Kim Mee Sook Park Ki-Joon Song Jin-Won Song Sun-Ho Kee Man-Seong Park |
author_facet |
Sehee Park Jin Il Kim Ilseob Lee Joon-Yong Bae Kirim Yoo Misun Nam Juwon Kim Mee Sook Park Ki-Joon Song Jin-Won Song Sun-Ho Kee Man-Seong Park |
author_sort |
Sehee Park |
title |
Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses |
title_short |
Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses |
title_full |
Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses |
title_fullStr |
Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses |
title_full_unstemmed |
Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses |
title_sort |
adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza a viruses |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/3693a39062d9445bb2927ce0bb4b9fa5 |
work_keys_str_mv |
AT seheepark adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT jinilkim adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT ilseoblee adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT joonyongbae adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT kirimyoo adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT misunnam adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT juwonkim adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT meesookpark adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT kijoonsong adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT jinwonsong adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT sunhokee adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses AT manseongpark adaptivemutationsofneuraminidasestalktruncationanddeglycosylationconferenhancedpathogenicityofinfluenzaaviruses |
_version_ |
1718388821458944000 |