Performance Evaluation of Offline Speech Recognition on Edge Devices
Deep learning–based speech recognition applications have made great strides in the past decade. Deep learning–based systems have evolved to achieve higher accuracy while using simpler end-to-end architectures, compared to their predecessor hybrid architectures. Most of these state-of-the-art systems...
Guardado en:
Autores principales: | Santosh Gondi, Vineel Pratap |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36a6cae073d040aea6e5ac3a23e7c280 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance and Efficiency Evaluation of ASR Inference on the Edge
por: Santosh Gondi, et al.
Publicado: (2021) -
Efficient Use of GPU Memory for Large-Scale Deep Learning Model Training
por: Hyeonseong Choi, et al.
Publicado: (2021) -
A Hybrid Speech Enhancement Algorithm for Voice Assistance Application
por: Jenifa Gnanamanickam, et al.
Publicado: (2021) -
The edge-to-edge geodetic domination number of a graph
por: John,J., et al.
Publicado: (2021) -
“I don’t Think These Devices are Very Culturally Sensitive.”—Impact of Automated Speech Recognition Errors on African Americans
por: Zion Mengesha, et al.
Publicado: (2021)