Automated stomata detection in oil palm with convolutional neural network
Abstract Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, its measurement is extremely tedious. To accelerate this process, we developed an automated system. Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2–3 years old)...
Guardado en:
Autores principales: | Qi Bin Kwong, Yick Ching Wong, Phei Ling Lee, Muhammad Syafiq Sahaini, Yee Thung Kon, Harikrishna Kulaveerasingam, David Ross Appleton |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36a9aff3402a4aef91a2438fd42fbc76 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genomic Selection in Commercial Perennial Crops: Applicability and Improvement in Oil Palm (Elaeis guineensis Jacq.)
por: Qi Bin Kwong, et al.
Publicado: (2017) -
An Efficient Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Protein 9 Mutagenesis System for Oil Palm (Elaeis guineensis)
por: Wan-Chin Yeap, et al.
Publicado: (2021) -
Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm
por: Chee-Keng Teh, et al.
Publicado: (2017) -
Mesophyll porosity is modulated by the presence of functional stomata
por: Marjorie R. Lundgren, et al.
Publicado: (2019) -
Automated spectroscopic modelling with optimised convolutional neural networks
por: Zefang Shen, et al.
Publicado: (2021)