Patient-specific COVID-19 resource utilization prediction using fusion AI model
Abstract The strain on healthcare resources brought forth by the recent COVID-19 pandemic has highlighted the need for efficient resource planning and allocation through the prediction of future consumption. Machine learning can predict resource utilization such as the need for hospitalization based...
Guardado en:
Autores principales: | Amara Tariq, Leo Anthony Celi, Janice M. Newsome, Saptarshi Purkayastha, Neal Kumar Bhatia, Hari Trivedi, Judy Wawira Gichoya, Imon Banerjee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36af332facc2437695b030d5732ceb23 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cognitive plausibility in voice-based AI health counselors
por: Thomas Kannampallil, et al.
Publicado: (2020) -
Evaluation framework to guide implementation of AI systems into healthcare settings
por: Enrico Coiera, et al.
Publicado: (2021) -
Do as AI say: susceptibility in deployment of clinical decision-aids
por: Susanne Gaube, et al.
Publicado: (2021) -
Bias and privacy in AI's cough-based COVID-19 recognition
por: Humberto Perez-Espinosa, et al.
Publicado: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021)