Adversarial Attention-Based Variational Graph Autoencoder
Autoencoders have been successfully used for graph embedding, and many variants have been proven to effectively express graph data and conduct graph analysis in low-dimensional space. However, previous methods ignore the structure and properties of the reconstructed graph, or they do not consider th...
Guardado en:
Autores principales: | Ziqiang Weng, Weiyu Zhang, Wei Dou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36c14220733f4a9a88d0654312455cd5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Search-and-Attack: Temporally Sparse Adversarial Perturbations on Videos
por: Hwan Heo, et al.
Publicado: (2021) -
Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
por: Sergio Saponara, et al.
Publicado: (2021) -
Adversarial attacks on deep learning models in smart grids
por: Jingbo Hao, et al.
Publicado: (2022) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021)