Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties

Mohd Farhan Khan,1,2 M Hameedullah,1 Akhter H Ansari,1 Ejaz Ahmad,3 MB Lohani,2 Rizwan Hasan Khan,3 M Mezbaul Alam,4 Wasi Khan,5 Fohad Mabood Husain,6 Iqbal Ahmad6 1NanoSolver Lab, Department of Mechanical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Khan MF, Hameedullah M, Ansari AH, Ahmad E, Lohani MB, Khan RH, Alam MM, Khan W, Husain FM, Ahmad I
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/36d8c19cfc63450b88793242ef248e7f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Mohd Farhan Khan,1,2 M Hameedullah,1 Akhter H Ansari,1 Ejaz Ahmad,3 MB Lohani,2 Rizwan Hasan Khan,3 M Mezbaul Alam,4 Wasi Khan,5 Fohad Mabood Husain,6 Iqbal Ahmad6 1NanoSolver Lab, Department of Mechanical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India; 2Department of Applied Chemistry, Integral University, Lucknow, India; 3Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; 4Chemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 5Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University Aligarh, India; 6Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India Abstract: Due to enormous applications of metal oxide nanoparticles in research and health-related applications, metal oxide nanoparticles are increasingly being developed through cheaper and more user-friendly approaches. We have formulated a simple route to synthesize zinc oxide nanoparticles (ZNPs) by a sol–gel method at near-room temperatures 25°C, 35°C, 55°C, and 75°C. The results are analyzed by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and ultraviolet-visible absorption spectroscopy. The effect of different temperature conditions (25°C–75°C) on the particulate sizes (23.7–88.8 nm), pH levels (11.7–11.9), and morphologies (slender needle–broad arrow) of flower-shaped ZNP colonies is studied. A possible mechanism depicting the growth rates at different temperatures and of different facets, mainly towards the <0 0 0 I> and <0 I Ī0> planes of the ZNPs has also been discussed. The values of λmax (293–298 nm) suggest that ZNPs prepared at 55°C are the most effective ultraviolet B absorbers, and that they can be used in sunscreens. Highly significant antimicrobial activity against medically important Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (Candida albicans) by these ZNPs was also revealed. As S. aureus and C. albicans are responsible for many contagious dermal infections such as abscesses, furuncles, carbuncles, cellulitis, and candidiasis, we can postulate that our fabricated ZNPs may be useful as antimicrobial agents in antiseptic creams and lotions for the treatment of skin diseases. Keywords: antimicrobial activity, cetyl trimethyl ammonium bromide, flower-shape zinc oxide nanoparticles, near-room temperature, sol–gel method, skin disease