Intelligent computing technique based supervised learning for squeezing flow model
Abstract In this study, the unsteady squeezing flow between circular parallel plates (USF-CPP) is investigated through the intelligent computing paradigm of Levenberg–Marquard backpropagation neural networks (LMBNN). Similarity transformation introduces the fluidic system of the governing partial di...
Guardado en:
Autores principales: | Maryam Mabrook Almalki, Eman Salem Alaidarous, Dalal Adnan Maturi, Muhammad Asif Zahoor Raja, Muhammad Shoaib |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36dd863941894678935a831deb6f6823 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model
por: Jawaher Lafi Aljohani, et al.
Publicado: (2021) -
Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid
por: Jawaher Lafi Aljohani, et al.
Publicado: (2021) -
Integrated intelligent computing application for effectiveness of Au nanoparticles coated over MWCNTs with velocity slip in curved channel peristaltic flow
por: Muhammad Asif Zahoor Raja, et al.
Publicado: (2021) -
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
por: Iftikhar Uddin, et al.
Publicado: (2021) -
Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer
por: Muhammad Shoaib, et al.
Publicado: (2022)