A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters

Abstract The pharmacokinetic variability of lamotrigine (LTG) plays a significant role in its dosing requirements. Our goal here was to use noninvasive clinical parameters to predict the dose-adjusted concentrations (C/D ratio) of LTG based on machine learning (ML) algorithms. A total of 1141 therap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiuqing Zhu, Wencan Huang, Haoyang Lu, Zhanzhang Wang, Xiaojia Ni, Jinqing Hu, Shuhua Deng, Yaqian Tan, Lu Li, Ming Zhang, Chang Qiu, Yayan Luo, Hongzhen Chen, Shanqing Huang, Tao Xiao, Dewei Shang, Yuguan Wen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/36e436b9525e4b3b9f9f54c1a7914a6c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:36e436b9525e4b3b9f9f54c1a7914a6c
record_format dspace
spelling oai:doaj.org-article:36e436b9525e4b3b9f9f54c1a7914a6c2021-12-02T13:20:22ZA machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters10.1038/s41598-021-85157-x2045-2322https://doaj.org/article/36e436b9525e4b3b9f9f54c1a7914a6c2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85157-xhttps://doaj.org/toc/2045-2322Abstract The pharmacokinetic variability of lamotrigine (LTG) plays a significant role in its dosing requirements. Our goal here was to use noninvasive clinical parameters to predict the dose-adjusted concentrations (C/D ratio) of LTG based on machine learning (ML) algorithms. A total of 1141 therapeutic drug-monitoring measurements were used, 80% of which were randomly selected as the "derivation cohort" to develop the prediction algorithm, and the remaining 20% constituted the "validation cohort" to test the finally selected model. Fifteen ML models were optimized and evaluated by tenfold cross-validation on the "derivation cohort,” and were filtered by the mean absolute error (MAE). On the whole, the nonlinear models outperformed the linear models. The extra-trees’ regression algorithm delivered good performance, and was chosen to establish the predictive model. The important features were then analyzed and parameters of the model adjusted to develop the best prediction model, which accurately described the C/D ratio of LTG, especially in the intermediate-to-high range (≥ 22.1 μg mL−1 g−1 day), as illustrated by a minimal bias (mean relative error (%) =  + 3%), good precision (MAE = 8.7 μg mL−1 g−1 day), and a high percentage of predictions within ± 20% of the empirical values (60.47%). This is the first study, to the best of our knowledge, to use ML algorithms to predict the C/D ratio of LTG. The results here can help clinicians adjust doses of LTG administered to patients to minimize adverse reactions.Xiuqing ZhuWencan HuangHaoyang LuZhanzhang WangXiaojia NiJinqing HuShuhua DengYaqian TanLu LiMing ZhangChang QiuYayan LuoHongzhen ChenShanqing HuangTao XiaoDewei ShangYuguan WenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Xiuqing Zhu
Wencan Huang
Haoyang Lu
Zhanzhang Wang
Xiaojia Ni
Jinqing Hu
Shuhua Deng
Yaqian Tan
Lu Li
Ming Zhang
Chang Qiu
Yayan Luo
Hongzhen Chen
Shanqing Huang
Tao Xiao
Dewei Shang
Yuguan Wen
A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
description Abstract The pharmacokinetic variability of lamotrigine (LTG) plays a significant role in its dosing requirements. Our goal here was to use noninvasive clinical parameters to predict the dose-adjusted concentrations (C/D ratio) of LTG based on machine learning (ML) algorithms. A total of 1141 therapeutic drug-monitoring measurements were used, 80% of which were randomly selected as the "derivation cohort" to develop the prediction algorithm, and the remaining 20% constituted the "validation cohort" to test the finally selected model. Fifteen ML models were optimized and evaluated by tenfold cross-validation on the "derivation cohort,” and were filtered by the mean absolute error (MAE). On the whole, the nonlinear models outperformed the linear models. The extra-trees’ regression algorithm delivered good performance, and was chosen to establish the predictive model. The important features were then analyzed and parameters of the model adjusted to develop the best prediction model, which accurately described the C/D ratio of LTG, especially in the intermediate-to-high range (≥ 22.1 μg mL−1 g−1 day), as illustrated by a minimal bias (mean relative error (%) =  + 3%), good precision (MAE = 8.7 μg mL−1 g−1 day), and a high percentage of predictions within ± 20% of the empirical values (60.47%). This is the first study, to the best of our knowledge, to use ML algorithms to predict the C/D ratio of LTG. The results here can help clinicians adjust doses of LTG administered to patients to minimize adverse reactions.
format article
author Xiuqing Zhu
Wencan Huang
Haoyang Lu
Zhanzhang Wang
Xiaojia Ni
Jinqing Hu
Shuhua Deng
Yaqian Tan
Lu Li
Ming Zhang
Chang Qiu
Yayan Luo
Hongzhen Chen
Shanqing Huang
Tao Xiao
Dewei Shang
Yuguan Wen
author_facet Xiuqing Zhu
Wencan Huang
Haoyang Lu
Zhanzhang Wang
Xiaojia Ni
Jinqing Hu
Shuhua Deng
Yaqian Tan
Lu Li
Ming Zhang
Chang Qiu
Yayan Luo
Hongzhen Chen
Shanqing Huang
Tao Xiao
Dewei Shang
Yuguan Wen
author_sort Xiuqing Zhu
title A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
title_short A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
title_full A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
title_fullStr A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
title_full_unstemmed A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
title_sort machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/36e436b9525e4b3b9f9f54c1a7914a6c
work_keys_str_mv AT xiuqingzhu amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT wencanhuang amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT haoyanglu amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT zhanzhangwang amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT xiaojiani amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT jinqinghu amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT shuhuadeng amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT yaqiantan amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT luli amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT mingzhang amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT changqiu amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT yayanluo amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT hongzhenchen amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT shanqinghuang amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT taoxiao amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT deweishang amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT yuguanwen amachinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT xiuqingzhu machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT wencanhuang machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT haoyanglu machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT zhanzhangwang machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT xiaojiani machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT jinqinghu machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT shuhuadeng machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT yaqiantan machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT luli machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT mingzhang machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT changqiu machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT yayanluo machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT hongzhenchen machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT shanqinghuang machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT taoxiao machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT deweishang machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
AT yuguanwen machinelearningapproachtopersonalizeddoseadjustmentoflamotrigineusingnoninvasiveclinicalparameters
_version_ 1718393202649595904