A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters
Abstract The pharmacokinetic variability of lamotrigine (LTG) plays a significant role in its dosing requirements. Our goal here was to use noninvasive clinical parameters to predict the dose-adjusted concentrations (C/D ratio) of LTG based on machine learning (ML) algorithms. A total of 1141 therap...
Guardado en:
Autores principales: | Xiuqing Zhu, Wencan Huang, Haoyang Lu, Zhanzhang Wang, Xiaojia Ni, Jinqing Hu, Shuhua Deng, Yaqian Tan, Lu Li, Ming Zhang, Chang Qiu, Yayan Luo, Hongzhen Chen, Shanqing Huang, Tao Xiao, Dewei Shang, Yuguan Wen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/36e436b9525e4b3b9f9f54c1a7914a6c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
por: Xiuqing Zhu, et al.
Publicado: (2021) -
Lamotrigine‐induced neutropenia after high‐dose concomitant initiation with phenytoin
por: Muhammad Salem, et al.
Publicado: (2021) -
Neuroprotection of lamotrigine on hypoxic-ischemic brain damage in neonatal rats: Relations to administration time and doses
por: Yong-Hong Yi, et al.
Publicado: (2008) -
Severe lamotrigine toxicosis in a dog
por: Sawyer D, et al.
Publicado: (2017) -
DEVELOPMENT OF A SIMPLE LC METHOD FOR QUANTIFICATION OF LAMOTRIGINE IN HUMAN SERUM
por: Albornoz P.,M., et al.
Publicado: (2020)