Inhibition of the nicotinic acetylcholine receptors by cobra venom α-neurotoxins: is there a perspective in lung cancer treatment?

Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Angela Alama, Cristina Bruzzo, Zita Cavalieri, Alessandra Forlani, Yuri Utkin, Ida Casciano, Massimo Romani
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/370312a1720b4af3baedca3d4ff02153
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted, we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated.We determined the activity of α-neurotoxins from Naja atra (short-chain neurotoxin, α-cobrotoxin) and Naja kaouthia (long-chain neurotoxin, α-cobratoxin) in vitro by cytotoxicity measurements in 5 lung cancer cell lines, by colony formation assay with α7nAChRs expressing and non-expressing cell lines and in vivo by assessing tumor growth in an orthotopic Non-Obese Diabetic/Severe Combined Immunodeficient (NOD/SCID) mouse model system utilizing different treatment schedules and dosages.No statistically significant reduction in tumor growth was observed in the treatment arms in comparison to the control for both toxins. Paradoxically α-cobrotoxin from Naja atra showed the tendency to enhance tumor growth although, even in this case, the statistical significance was not reached.In conclusion our results show that, in contrast with other reports, the nAChR inhibitors α-cobratoxin from N. kaouthia and α-cobrotoxin from N. atra neither suppressed tumor growth nor prolonged the survival of the treated animals.