Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction
Abstract Recent years have seen a resurgence of interest in inexpensive low magnetic field (< 0.3 T) MRI systems mainly due to advances in magnet, coil and gradient set designs. Most of these advances have focused on improving hardware and signal acquisition strategies, and far less on the use of...
Guardado en:
Autores principales: | N. Koonjoo, B. Zhu, G. Cody Bagnall, D. Bhutto, M. S. Rosen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37120cbf0d8a41e6857b2c949ac83c70 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification
por: Ming Gao, et al.
Publicado: (2021) -
Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta
por: Andra Heinrich, et al.
Publicado: (2021) -
Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
por: Léonard Seydoux, et al.
Publicado: (2020) -
Far-Field Subwavelength Acoustic Imaging by Deep Learning
por: Bakhtiyar Orazbayev, et al.
Publicado: (2020) -
Reconstructing lost BOLD signal in individual participants using deep machine learning
por: Yuxiang Yan, et al.
Publicado: (2020)