Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model
Abstract Accurate state of charge (SOC) estimation of lithium-ion (Li-ion) batteries is crucial in prolonging cell lifespan and ensuring its safe operation for electric vehicle applications. In this article, we propose the deep learning-based transformer model trained with self-supervised learning (...
Guardado en:
Autores principales: | M. A. Hannan, D. N. T. How, M. S. Hossain Lipu, M. Mansor, Pin Jern Ker, Z. Y. Dong, K. S. M. Sahari, S. K. Tiong, K. M. Muttaqi, T. M. Indra Mahlia, F. Blaabjerg |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/37125291cee749d5afdfff954166db3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Role of optimization algorithms based fuzzy controller in achieving induction motor performance enhancement
por: M. A. Hannan, et al.
Publicado: (2020) -
Photo-accelerated fast charging of lithium-ion batteries
por: Anna Lee, et al.
Publicado: (2019) -
Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries
por: Shaheer Ansari, et al.
Publicado: (2021) -
Lithium and Potassium Cations Affect the Performance of Maleamate-Based Organic Anode Materials for Potassium- and Lithium-Ion Batteries
por: Kefyalew Wagari Guji, et al.
Publicado: (2021) -
Smart and Functional Materials for Lithium-Ion Battery
por: C. M. Costa, et al.
Publicado: (2021)