In silico prediction of high-resolution Hi-C interaction matrices
Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/371269a5f21c4aab82d477791ec36389 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals. |
---|