In silico prediction of high-resolution Hi-C interaction matrices

Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.

Guardado en:
Detalles Bibliográficos
Autores principales: Shilu Zhang, Deborah Chasman, Sara Knaack, Sushmita Roy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/371269a5f21c4aab82d477791ec36389
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:371269a5f21c4aab82d477791ec36389
record_format dspace
spelling oai:doaj.org-article:371269a5f21c4aab82d477791ec363892021-12-02T17:31:53ZIn silico prediction of high-resolution Hi-C interaction matrices10.1038/s41467-019-13423-82041-1723https://doaj.org/article/371269a5f21c4aab82d477791ec363892019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13423-8https://doaj.org/toc/2041-1723Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.Shilu ZhangDeborah ChasmanSara KnaackSushmita RoyNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-18 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shilu Zhang
Deborah Chasman
Sara Knaack
Sushmita Roy
In silico prediction of high-resolution Hi-C interaction matrices
description Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.
format article
author Shilu Zhang
Deborah Chasman
Sara Knaack
Sushmita Roy
author_facet Shilu Zhang
Deborah Chasman
Sara Knaack
Sushmita Roy
author_sort Shilu Zhang
title In silico prediction of high-resolution Hi-C interaction matrices
title_short In silico prediction of high-resolution Hi-C interaction matrices
title_full In silico prediction of high-resolution Hi-C interaction matrices
title_fullStr In silico prediction of high-resolution Hi-C interaction matrices
title_full_unstemmed In silico prediction of high-resolution Hi-C interaction matrices
title_sort in silico prediction of high-resolution hi-c interaction matrices
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/371269a5f21c4aab82d477791ec36389
work_keys_str_mv AT shiluzhang insilicopredictionofhighresolutionhicinteractionmatrices
AT deborahchasman insilicopredictionofhighresolutionhicinteractionmatrices
AT saraknaack insilicopredictionofhighresolutionhicinteractionmatrices
AT sushmitaroy insilicopredictionofhighresolutionhicinteractionmatrices
_version_ 1718380422859063296