In silico prediction of high-resolution Hi-C interaction matrices
Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/371269a5f21c4aab82d477791ec36389 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:371269a5f21c4aab82d477791ec36389 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:371269a5f21c4aab82d477791ec363892021-12-02T17:31:53ZIn silico prediction of high-resolution Hi-C interaction matrices10.1038/s41467-019-13423-82041-1723https://doaj.org/article/371269a5f21c4aab82d477791ec363892019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13423-8https://doaj.org/toc/2041-1723Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals.Shilu ZhangDeborah ChasmanSara KnaackSushmita RoyNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-18 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shilu Zhang Deborah Chasman Sara Knaack Sushmita Roy In silico prediction of high-resolution Hi-C interaction matrices |
description |
Existing computational approaches to predict long-range regulatory interactions do not fully exploit high-resolution Hi-C datasets. Here the authors present a Random Forests regression-based approach to predict high-resolution Hi-C counts using one-dimensional regulatory genomic signals. |
format |
article |
author |
Shilu Zhang Deborah Chasman Sara Knaack Sushmita Roy |
author_facet |
Shilu Zhang Deborah Chasman Sara Knaack Sushmita Roy |
author_sort |
Shilu Zhang |
title |
In silico prediction of high-resolution Hi-C interaction matrices |
title_short |
In silico prediction of high-resolution Hi-C interaction matrices |
title_full |
In silico prediction of high-resolution Hi-C interaction matrices |
title_fullStr |
In silico prediction of high-resolution Hi-C interaction matrices |
title_full_unstemmed |
In silico prediction of high-resolution Hi-C interaction matrices |
title_sort |
in silico prediction of high-resolution hi-c interaction matrices |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/371269a5f21c4aab82d477791ec36389 |
work_keys_str_mv |
AT shiluzhang insilicopredictionofhighresolutionhicinteractionmatrices AT deborahchasman insilicopredictionofhighresolutionhicinteractionmatrices AT saraknaack insilicopredictionofhighresolutionhicinteractionmatrices AT sushmitaroy insilicopredictionofhighresolutionhicinteractionmatrices |
_version_ |
1718380422859063296 |